Chemistry Class 12 Syllabus

The syllabus consists of ten units: (i) Solutions (ii) Electrochemistry (iii) Chemical Kinetics (iv) d- and f- Block Elements (v) Coordination Compounds (vi) Haloalkanes and Haloarenes (vii) Alcohols, Phenols and Ethers (viii) Aldehydes, Ketones and Carboxylic Acids (ix) Amines (x) Biomolecules.

Exam Structure

Unit Title Marks
1 Solutions 7
2 Electrochemistry 9
3 Chemical Kinetics 7
4 d- and f- Block Elements 7
5 Coordination Compounds 7
6 Haloalkanes and Haloarenes 6
7 Alcohols, Phenols and Ethers 6
8 Aldehydes, Ketones and Carboxylic Acids 8
9 Amines 6
10 Biomolecules 7
  Total 70

Unit 2: Solutions

Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, Raoult's law, colligative properties - relative lowering of vapour pressure, elevation of boiling point, depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass, Van't Hoff factor.

Unit 3: Electrochemistry

Redox reactions, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells, Relation between Gibbs energy change and EMF of a cell, conductance in electrolytic solutions, specific and molar conductivity, variations of conductivity with concentration, Kohlrausch's Law, electrolysis and law of electrolysis (elementary idea), dry cell - electrolytic cells and Galvanic cells, lead accumulator, fuel cells, corrosion.

Unit 4: Chemical Kinetics

Rate of a reaction (Average and instantaneous), factors affecting rate of reaction: concentration, temperature, catalyst; order and molecularity of a reaction, rate law and specific rate constant, integrated rate equations and half-life (only for zero and first order reactions), concept of collision theory (elementary idea, no mathematical treatment), activation energy, Arrhenius equation.

Unit 8: d and f Block Elements

General introduction, electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first row transition metals - metallic character, ionization enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic properties, interstitial compounds, alloy formation, preparation and properties of K2Cr2O7 and KMnO4.

Lanthanoids - Electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction and its consequences.

Actinoids - Electronic configuration, oxidation states and comparison with lanthanoids.

Unit 9: Coordination Compounds

Coordination compounds - Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds. Bonding, Werner's theory, VBT, and CFT; structure and stereoisomerism, importance of coordination compounds (in qualitative analysis, extraction of metals and biological system).

Unit 10: Haloalkanes and Haloarenes

Haloalkanes: Nomenclature, nature of C-X bond, physical and chemical properties, optical rotation mechanism of substitution reactions.

Haloarenes: Nature of C-X bond, substitution reactions (Directive influence of halogen in monosubstituted compounds only).

Uses and environmental effects of - dichloromethane, trichloromethane, tetrachloromethane, iodoform, freons, DDT.

Unit 11: Alcohols, Phenols and Ethers

Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only), identification of primary, secondary and tertiary alcohols, mechanism of dehydration, uses with special reference to methanol and ethanol.

Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophillic substitution reactions, uses of phenols.

Ethers: Nomenclature, methods of preparation, physical and chemical properties, uses.

Unit 12: Aldehydes, Ketones and Carboxylic Acids

Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties, mechanism of nucleophilic addition, reactivity of alpha hydrogen in aldehydes, uses.

Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses.

Unit 13: Amines

Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical properties, uses, identification of primary, secondary and tertiary amines.

Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry.

Unit 14: Biomolecules

Carbohydrates - Classification (aldoses and ketoses), monosaccahrides (glucose and fructose), D-L configuration, oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen); Importance of carbohydrates.

Proteins - Elementary idea of - amino acids, peptide bond, polypeptides, proteins, structure of proteins - primary, secondary, tertiary structure and quaternary structures (qualitative idea only), denaturation of proteins; enzymes. Hormones - Elementary idea excluding structure.

Vitamins - Classification and functions.

Nucleic Acids: DNA and RNA.